
Memory Leaks in Java
Applications: Different Tools
for Different Types of Leaks

Gregg Sporar
Senior Staff Engineer

Sun Microsystems, Inc.
Austin, TX

gregg.sporar@sun.com

Goal

To understand the different types of tools
and techniques available for finding
memory leaks.

Agenda

Observing the Problem
What's the Problem?

Inspecting the Heap
Using Instrumentation
Lessons Learned

Q&A
An Additional Problem...

Disclaimers

Using Sun's JDK

The demos use example code
Mostly talking about JDK 5 and 6

Agenda
What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Have You Ever Seen This?

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

And Then Do Your Users Do This?

So What Do You Do?

 Increase the size of the heap

And hope that the problem is fixed....

-Xmx64m -Xmx80m

But If That Does Not Fix the Problem....

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at app.leaking.UhOh(leaking.java:41)
 at app.leaking.WeHadHoped(leaking.java:51)
 at app.leaking.IfWeKeptIncreasing(leaking.java:55)
 at app.leaking.TheHeapSize(leaking.java:59)
 at app.leaking.ThenMaybeThisProblemWouldGoAway(leaking.java:63)
 at app.leaking.LooksLikeItHasNotGoneAway(leaking.java:67)
 at app.leaking.Bummer(leaking.java:61)
 at app.leaking.main(leaking.java:31)

Result: Additional User Frustration....

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Observing the Problem
 java -verbose:gc YourApp

 [GC 189K->128K(1984K), 0.0016829 secs]
[Full GC 128K->128K(1984K), 0.0108424 secs]
[GC 10378K->10368K(12228K), 0.0004978 secs]
[Full GC 10368K->10368K(12228K), 0.0097568 secs]
[GC 20633K->20608K(28872K), 0.0002025 secs]
[Full GC 20608K->20608K(28872K), 0.0097892 secs]
[GC 30896K->30848K(36972K), 0.0002380 secs]
[Full GC 30848K->30847K(36972K), 0.0641433 secs]

Observing the Problem (continued)

Observing the Problem (continued)
On JDK 1.4.2 or JDK 5:

 java -Dcom.sun.management.jmxremote YourApp

Observing the Problem (continued)

Observing the Problem (continued)

Observing the Problem (continued)
More Tools in JDK6:

• -XX:+HeapDumpOnOutOfMemoryError
 (Also available in JDK 1.4.2 and JDK 5)

• jhat

• jmap for Windows

• Stack trace on OutOfMemoryError

Exception in thread "main" java.lang.OutOfMemoryError: Java heap
space
 at app.leaking.UhOh(leaking.java:41)
 at app.leaking.WeHadHoped(leaking.java:51)
 at app.leaking.IfWeKeptIncreasing(leaking.java:55)
 at app.leaking.TheHeapSize(leaking.java:59)
 at
app.leaking.ThenMaybeThisProblemWouldGoAway(leaking.java:63)
 at app.leaking.LooksLikeItHasNotGoneAway(leaking.java:67)
 at app.leaking.Bummer(leaking.java:61)
 at app.leaking.main(leaking.java:31)

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Case Study: A Swing Application
Production Planning application

Developed during 1999-2002

 JDK 1.2 (later moved to JDK 1.3 and then 1.4)

~263,000 LOCs

~1,600 Classes

Memory leak found during QA, right before
going live

 Easy to reproduce the problem, with the right
data, but still not obvious what the cause was

DEMO

Inspecting the Heap With a Profiler

So What Happened?

A bug in someone else's code prevented
garbage collection of my objects

4215796: RepaintManager DoubleBuffer can
cause leak...

Swing var

My Swing control

Tree model

Domain model

So What Happened? (cont'd)

Easy to work around – once you know the
problem....

Swing var

My Swing control

Tree model

Domain model

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Case Study: A Web Application
Hardware/software analysis system

Developed during 2000-2004

 JDK 1.? (Later moved to JDK 1.4)

>150,000 LOCs, which does not include:
• the JSPs

• a subsystem written in Perl

Memory leak in the live, production system

Hard to reproduce the problem - seemed to
occur randomly

DEMO

Using Instrumentation

So What Happened?
Multiple places in the code were allocating

AnalysisResults objects, but only some of
those allocations were causing leaks.

 HashMap

: AnalysisResult allocated by the background process
: AnalysisResult allocated by the foreground process

So What Happened? (continued)

The foreground code always removed its
entries from the HashMap. The background
code never removed its entries.

 HashMap

: AnalysisResult allocated by the background process

How Does “Generation Count” Help?

One Example of Healthy Behavior:

Long-lived objects.

Example: Three object
instances created at
startup.

Their ages continue to
increase, but
generation count
remains stable (at 1)

How Does “Generation Count” Help?
Another Example of Healthy Behavior:

Short-lived objects

Example: Create an
object, use it and then
immediately let go of all
references to it.

Generation count
remains stable (at 1)

How Does “Generation Count” Help?

Unhealthy Behavior (a Memory Leak):

Example: Continue to
allocate objects without
letting go of all
references.

Ten objects with eight
different ages.

Generation count is
always increasing.

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Lessons Learned

Plenty of good, free tools available that
provide a high-level view of the memory used
by a Java application

Beyond that, there are two broad categories:
• Inspecting the Heap

• Instrumentation

Lessons Learned (continued)

 Inspecting the Heap Instrumentation
•Strengths:

●Less impact on performance
●Easy to see relationships
between objects

•Strengths:
●Identifies objects that are candidate
memory leaks
●Does not require as much
knowledge of the code
●Scales well

•Weaknesses:
●No information about how the
objects got onto the heap – or
whether they should still be
there
●Large heap size can lead to
information overload
●Can be tough to use if you
don't know the code

•Weaknesses:
●Introduces runtime overhead
●Does not show relationships
between the objects

Agenda

What's the Problem?

Observing the Problem

Walking the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Have You Ever Seen This?

Exception in thread "main" java.lang.OutOfMemoryError: PermGen full

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

These Guys Have....

http://blogs.sun.com/edwardchou/entry/javaone_bof
_on_memory_leaks

http://blogs.sun.com/fkieviet/entry/javaone_2007

The basics: heap memory generations

Young Tenured Permanent

Usually referred to as “the
heap.” Controlled by -Xmx
and -Xms

Used by the JVM to
store classes.
Controlled by
-XX:MaxPermSize
and -XX:PermSize

The basics: classes and classloaders

 Each object is an instance of a class

A class itself is an object (class object)

• instance of the class Class

 Each class object references its classloader

A classloader references all classes it loaded

Class objects hold static members

The basics: classes and classloaders

java.lang.Class

java.lang.Objectjava.lang.ClassLoader

*

1

1

statics

*

*

Why use classloaders?

Containers use classloaders to
• dynamically load applications

• isolate applications from each other

• dynamically unload applications

Example: empty servlet

package com.stc.test;
import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Servlet1 extends HttpServlet {
 private static final String STATICNAME = "Simple";
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // nothing
 }
}

Deployed

Undeployed

Classloader leaks

A classloader cannot be garbage collected if
any of the instances of any of the classes it
loaded are reachable.

Such a classloader keeps all its classes with
all their static members in memory.
• Not immediately apparent from a memory dump

what is a leak and what is not.

• Cause of the leak difficult to find.

Example: a leaking servlet
package com.stc.test;
import java.io.*;
import java.util.logging.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class LeakServlet extends HttpServlet {
 private static final String STATICNAME = "Leak!";
 static Level CUSTOMLEVEL = new Level("OOPS", 555) {};
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // Log at a custom level
 Logger.getLogger("test").log(CUSTOMLEVEL, "x called");
 }
}

java.util.logging.Level class

private static List known = new ArrayList();
protected Level(String name, int value) {
 this.name = name;
 this.value = value;
 synchronized (Level.class) {
 known.add(this);
 }
}

Deployed

Undeployed

A Leak...
These 2 are taking up space in PermGen

Reality:

Hundreds or Thousands of leaked classes

 Thousands of leaked objects

Bafflement...

Java Profilers

 Take memory snapshots

 Find reference chains to GC root objects

Most see class objects as GC root objects – so
they are not very helpful

DEMO

Inspecting the Heap With jhat

Agenda

What's the Problem?

Observing the Problem

Walking the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

A Common Question

Are there any proactive techniques that will
eliminate these problems?

Static Analysis tools: Might help, but in
general not very useful....

Weak References: Can be very helpful –
http://weblogs.java.net/blog/enicholas/
archive/2006/05/understanding_w.html

Resources

Both available at http://www.stpmag.com/

April, 2007 issue May, 2007 issue

Q & A

gregg.sporar@sun.com

