{ THE JAVA™ METROPLEX USERS GROUP
)

Memory Leaks Iin Java
Applications: Different Tools
for Different Types of Leaks

Gregg Sporar
Senior Staff Engineer
Sun Microsystems, Inc.
Austin, TX
gregg.sporar@sun.com

Goal

Agenda

What's the Problem?
Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned

An Additional Problem...
Q&A

Disclaimers

Using Sun's JDK

Mostly talking about JDK 5 and 6
The demos use example code

Agenda
What's the Problem?

Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned

An Additional Problem...
Q&A

Have You Ever Seen This?

Exception in thread "main" java.lang. Qut O MenoryError: Java heap space

And Then Do Your Users Do This?

So What Do You Do?

Increase the size of the heap

And hope that the problem is fixed....

But If That Does Not Fix the Problem....

Exception in thread "main" java.lang. Qut O MenoryError: Java heap space

at
at
at
at
at
at
at
at

app.
app.
app.
app.
app.
app.
app.
app.

| eaki
| eaki
| eaki
| eaki
| eaki
| eaki
| eaki
| eaki

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

UhCh(| eaki ng. j ava: 41)
WeHadHoped(| eaki ng. j ava: 51)

| f WeKept | ncr easi ng(| eaki ng. j ava: 55)
TheHeapSi ze(| eaki ng. j ava: 59)

ThenMaybeThi sProbl enWul dGoAway (| eaki ng. j ava: 63)
LooksLi kel t HasNot GoneAway(| eaki ng. j ava: 67)
Burmer (| eaki ng. j ava: 61)

mai n(| eaki ng. j ava: 31)

Result: Additional User Frustration....

Agenda
What's the Problem??

Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned

An Additional Problem...
Q&A

Observing the Problem

java -verbose:gc YourApp

[GC 189K->128K(1984K), 0.0016829 secs]

[Full GC 128K->128K(1984K), 0.0108424 secs]

[GC 10378K->10368K(12228K), 0.0004978 secs]
[Full GC 10368K->10368K(12228K), 0.0097568 secs]
[GC 20633K->20608K(28872K), 0.0002025 secs]
[Full GC 20608K->20608K(28872K), 0.0097892 secs]
[GC 30896K->30848K(36972K), 0.0002380 secs]
[Full GC 30848K->30847K(36972K), 0.0641433 secs]

Observing the Problem (continued)

3| Gr

Il |2100 Main] & oC Tuning & Help

rApplication Information

rCompile Time: 3139 compiles - 1.979s

Alive Elapsed Time: 15m 21.030s et
Java Command Line: orginetbeansMain —branding nb - fontsize 13 rClass Loader Time: 8643 loaded, 103 unloaded - 9.335s

i

dava VM Arguments: -Dnetheans.importclass=org.netheans.upgrade.AutoUpgrade -Dnetheans.accept rGC Time: 217 collections, 2.008s Last Cause: unknown GCCause—
|license_class=org.netheans.license AcceptlLicense -Xms32m -Xmx384m -XX:PermSize=32m -XX:M &3 LT

rErEden Space (3.875M, 3.875M): 3.865M, 208 collections, 1.197s

itiid

~Perm

rSurvivor 0 (64.000K, 64.000K): 0

FSurvivor 1 (64.000K, 64.000K): 0

Perm Gen (96.000M, 68.367M): 41.718M

rParameters

Tenuring Threshold: 0 Mazx: Tenuring Thres...0 Desired Survivor Siz... 32768 Current Survivor Siz... 65536
rHistogram

0 N TR A WA A e

Observing the Problem (continued)

On JDK 1.4.2 or JDK 5:

java -Dcom.sun.management.jmxremote YourApp

£ J2SE 5.0 Monitoring & Management Console: 2212@Iocalhost

Connection
r Sumimanry r Memory r Threads r Classes |/ MBeans |/Ul'u'l |
Chart: |Heap Memory Usage | - | Time Range: Perform GC
20 Mb—
16 Mb 4
Used
10 Mb 4 4 11,088,192
5.0 Mb
0.0 Mb-L
17:55
Details
Time: 2006-05-04 17:55:42 100% -
Used: 10,808 kbytes —_
Conurnitted: 12,228 khytes
Max: 65,088 Ehytes 0% -
GC time: 0.067 seconds seconds on Copy (36 collections) 5% -
0.000 seconds seconds on MarkSweepCorapact (0 collections) 0% -
Heap | | Mon-Heap

Observing the Problem (continued)

i gs145266(@gs145266-ubu: fusr/libfjvm/java-6-sun/bin =l

num #instances
1: 1874
2: 6008
3: 6908
4: 1152
5: 6439
6: 800
7: 0828
8: 800
9: 750
10: 4245
11: 6608
12: 4558
13: 1058
14: 196
15: 797
16: 1248
17: 249
18: 3136
19: 160

File Edit Wiew Terminal Tabs Help

#bytes

771160
560904
540184
534064
474056
425672
417448
283984
166336
158592
109392
101568
97224
86952
81584
79680
75264
72960

class name

3647312

[1

<constMethodKlass>
<methodKlass>

[B

[C

<instanceKlassKlass>
<symbolKlass>
<constantPoolKlass>
<constantPoolCacheKlass>
[Ljava.lang.0Object;
java.lang.5tring
java.util.HashMap$Entry
java.lang.Class

[D
[Ljava.util.HashMapSEntry;
[S

<objArrayKlassKlass>
sun.font.TrueTypeFontéDirectoryEntry
javald.Toolss3

(<]

Observing the Problem (continued)

VisualvM (Preview 1)

File Edit Profile Wiew Tools Window Help

Applications 4 x| | 4 Java2Demo jar (pid 7370) x [][=][=]

- i Local .
. . i Monitor iler =
% org.netbeans.Main (pid 7075) Qvenview Il"i:'| | | Profiler =

& |ava2Demo jar (pid 7370)

£ VisualvM
"ij Remote
£l ¥M Coredumps

Java2Demo.jar (pid 7370)

Uptime: 1 min 50 sec

View: @ Heap metrics () PermGen metrics () Threads metrics (O Classes metrics
~Heap metrics:

Heap size: 13426688 Max heap: 67108854
Used heap: 8244064
15M
10mM

S

o

17:41:30 17:42:00 17:42:30

Cd Heap size B Used heap

Observing the Problem (continued)

More Tools in JDKG6:

e =XX:+HeapDumpOnOutOfMemoryError
= (Also available in JDK 1.4.2 and JDK 5)

* jhat
 jmap for Windows

 Stack trace on OutOfMemoryError

Exception in thread "main" java.lang. Qut O MenoryError: Java heap
space
at app. | eaki ng. UnCh(| eaki ng. j ava: 41)
at app. | eaki ng. WeHadHoped(| eaki ng. j ava: 51)
at app. | eaking. | f WeKept | ncr easi ng(| eaki ng. j ava: 55)
at app. | eaki ng. TheHeapSi ze(l eaki ng. j ava: 59)
at
app. | eaki ng. ThenMaybeThi sPr obl enWbul dGoAway (| eaki ng. j ava: 63)
at app. | eaki ng. LooksLi kel t HasNot GoneAway (| eaki ng. j ava: 67)
at app. | eaki ng. Bummer (| eaki ng. j ava: 61)
at app. | eaki ng. mai n(1 eaki ng. java: 31)

Agenda

What's the Problem?
Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned

An Additional Problem...
Q&A

Case Study: A Swing Application

Production Planning application

Developed during 1999-2002

JDK 1.2 (later moved to JDK 1.3 and then 1.4)
~263,000 LOCs

~1,600 Classes

Memory leak found during QA, right before
going live

Easy to reproduce the problem, with the right
data, but still not obvious what the cause was

DEMO

Inspecting the Heap With a Profiler

So What Happened?

A bug in someone else's code prevented
garbage collection of my objects

4215796: RepaintManager DoubleBuffer can
cause leak...

‘ My Swing control

Tree model

So What Happened? (cont'd)

Easy to work around - once you know the
problem....

My Swing control
\ Domain model

Tree model

Agenda
What's the Problem?
Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned
An Additional Problem...
Q&A

Case Study: A Web Application

Hardware/software analysis system
Developed during 2000-2004
JDK 1.? (Later moved to JDK 1.4)

>150,000 LOCs, which does not include:
e the JSPs

 a subsystem written in Perl
Memory leak in the live, production system

Hard to reproduce the problem - seemed to
occur randomly

DEMO

Using Instrumentation

So What Happened?

Multiple places in the code were allocating
AnalysisResults objects, but only some of
those allocations were causing leaks.

HashMap

: AnalysisResult allocated by the foreground process
- : AnalysisResult allocated by the background process

So What Happened? (continued)

The foreground code always removed its
entries from the HashMap. The background
code never removed its entries.

/::
\ﬁ—‘
HashMap

- : AnalysisResult allocated by the background process

How Does "Generation Count” Help?

One Example of Healthy Behavior:

gc run

000

Start

gc run

gc run

gc run

gc run

gc run

gc run

e Now

Long-lived objects.

Example: Three object
instances created at
startup.

Their ages continue to
increase, but
generation count
remains stable (at 1)

How Does “Generation Count” Help?

Another Example of Healthy Behavior:

Start

gc run

gc run

gc run

gc run

gc run

gc run

gc run

 Now

Short-lived objects

Example: Create an
object, use it and then
immediately let go of all
references to it.

Generation count
remains stable (at 1)

How Does “"Generation Count” Help?

Unhealthy Behavior (a Memory Leak):

gc run

0o

Start

gc run

gc run

gc run

gc run

gc run

gc run

= Now

Example: Continue to
allocate objects without
letting go of all
references.

Ten objects with eight
different ages.

Generation count is
always increasing.

Agenda

What's the Problem?
Observing the Problem
Inspecting the Heap
Using Instrumentation
Lessons Learned

An Additional Problem...
Q&A

Lessons Learned

Plenty of good, free tools available that
provide a high-level view of the memory used
by a Java application

Beyond that, there are two broad categories:
e Inspecting the Heap

e Instrumentation

Lessons Learned (continued)

Inspecting the Heap

Instrumentation

*Strengths:
sLess impact on performance
*Easy to see relationships
between objects

*Weaknesses:
*No information about how the
objects got onto the heap — or
whether they should still be
there
sLarge heap size can lead to
information overload
«Can be tough to use if you
don't know the code

*Strengths:
ldentifies objects that are candidate
memory leaks
*Does not require as much
knowledge of the code
*Scales well

*\Weaknesses:
*|ntroduces runtime overhead
*Does not show relationships
between the objects

Agenda
What's the Problem?

Observing the Problem
Walking the Heap
Using Instrumentation

|l essons Learned

An Additional Problem...

Q&A

Have You Ever Seen This?

Exception in thread "main" java.l ang. Qut O MenDr YEl I' Ol sigestiygimtaa-aeammin-oeegm

Exception in thread "main" java.lang. Qut O MenoryError: Pernten full

These Guys Have....

PSun

o @ OpenkESB
The Open Enterprise Service Bus

JavaOne

Edward Chou
Frank Kieviet

SOA/BI
Sun Microsystems

BOF-9982

java.sun.com/javaone

http://blogs.sun.com/ edardchou/ entry/Javaone bof

_on_memory_leaks
http://blogs.sun.com/fkieviet/entry/javaone_2007

The basics: heap memory generations

Used by the JVM to

w store classes.
Usually referred to as “the Controlled by

heap.” Controlled by -Xmx -XX:MaxPermSize
and -Xms and -XX:PermSize

The basics: classes and classloaders

Each object is an instance of a class

A class itself is an object (class object)

e instance of the class Class

Each class object references its classloader

A classloader references all classes it loaded

Class objects hold static members

The basics: classes and classloaders

4—
java.lang.Class

1

*

sonels

java.lang.ClassLoader java.lang.Object

%

Why use classloaders?

Containers use classloaders to
« dynamically load applications
* isolate applications from each other

* dynamically unload applications

Example: empty servlet

package com.stc. test;

import java.io.¥*;

import java.net.¥*;

import javax.servlet.*;
import javax.servlet.http.*;

public class Servletl extends HttpServlet {
private static final String STATICNAME = "Simple";
protected void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// nothing

}
}

Deployed

¥

Servlet! class * STATICNAME
F 3
Container * AppClassloader
Undeployed
4

Container

Classloader leaks

A classloader cannot be garbage collected if
any of the instances of any of the classes it
loaded are reachable.

Such a classloader keeps all its classes with
all their static members in memory.

* Not immediately apparent from a memory dump
what is a leak and what is not.

e Cause of the leak difficult to find.

Example: a leaking servlet

package com.stc.test;

import java.io.¥*;

import java.util.logging.*;
import javax.servlet.¥*;
import javax.servlet.http.*;

public class LeakServlet extends HttpServlet {
private static final String STATICNAME = "Leak!";
static Level CUSTOMLEVEL = new Level ("OOPS", 555) ({};
protected void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
// Log at a custom level
Logger.getLogger ("test") .l1log (CUSTOMLEVEL, "x called");
}
}

java.util.logging.Level class

private static List known = new ArraylList();

protected Level (String name, int value) ({
this.name = name;
this.value = wvalue;
synchronized (Level.class) {
known.add (this) ;

}
}

LeakSendeat

STATICHAME
v
LeakSendet class S| CUSTOMLEWEL .
&
L 4
Container * AppClassloader ¥ LeakSendet!$ class

Level class

™ Level INFO

Level =EVERE

Level .. elo

Deployed

A Leak...
These 2 are taking up space in PermGen

LeakServlet
STATICMAME
LeakSenet class .| CLUSTOMLEVEL
Container AppClassloadsr P LeakSendet!$1 class
Level class

Undeployed o LovelNFO

| Level =EVERE

T EEl et

o

Reality:

Hundreds or Thousands of leaked classes
Thousands of leaked objects

Bafflement...

Java Profilers

Take memory snapshots
Find reference chains to GC root objects

Most see class objects as GC root objects - so
they are not very helpful

DEMO

Inspecting the Heap With jhat

Agenda
What's the Problem?
Observing the Problem
Walking the Heap
Using Instrumentation
Lessons Learned
An Additional Problem...
Q&A

A Common Question

Are there any proactive techniques that will
eliminate these problems?

Static Analysis tools: Might help, but In
general not very useful....

Weak References: Can be very helpful -
http://weblogs.java.net/blog/enicholas/
archive/2006/05/understanding_w.html

Resources

By Gragg Sporar and A. Sundararajan

oes your fova application become slower as it runs? The cause
could be a memory leak. In Jova applications, memory leaks

usually end up causing performance
P'[ob]en:p.Atthe]eﬂt,lheydeqmethe
CPU time awailable for mmning your
application. slowing its ability o
respond. In o wopst-case scepario, your
application stops responding alogether

Zoling memory leak problems in
Jawn applications requires a variety of
tools apd tec]]uiq_uel. Ther= i= no sior

gle solution—different techniques are
:LPPIDP'rj:Lhe for different situatjons.

What Is a Mamory Leak?

T‘he]ump‘rogmmmjn‘glan‘gunge does-
n't require the developer to directly
manage memory allocations—it does-
n't even allow jt. Instead, programs use
the me operator to allocaie o'bj ects on

Software Test

& Performance
April, 2007 issue

an CutOfMemoryError will stop
respoanding to requests.

A common approach for resoking
an CutOfMemoryError is to restart
ithe aPP'IjGﬂ'i,o'u and use a_]"i?h[opﬁon
[T rpecifg' a hIECI]:eaP. This is rea-
scmable during development. when
you're determining the heap require-
ments of the application. The heap
should grow as your application
processes requests. As the Jead
declip=s, ihe hﬂP usage should

Braim,Drain In Your
Java Apps?

May, 2007 issue

By Gregg Sporar, A. Sundararajan and Frank Kieviet

the the rest of us, you probably
don’t think much about
aging parts under the hood—
until a hose starts to leak. Then it

suddenly becomes that trips urgent
issue, sometimes forcing you off the
road with disastrous results. So what

operator; the term hkeap is commonly
used to refer to the combination of the
voung and tenured generations.

The permanent generation, however,
is very different. The VM employs it to
hold the classes that your application
uses. Your applicaion’s classes are loaded
by a class loader, which the JVM provides
so that you don’t have to be concerned

refer wo Sun’s reference implementa-
tions, version 1.4.2 or higher.

What Causes PermGen Leaks?

If your application encounters an
OuwtDfMemorvError, it could be the
permanent generation that ran out of
space. Starting with JDE 5, the
OuOfMemorvError message includes

Both available at http://www.stpmag.com/

Q&A

gregg.sporar@sun.com

